Search results for "Heavy fermions"

showing 2 items of 2 documents

New state of matter: heavy-fermion systems, quantum spin liquids, quasicrystals, cold gases, and high temperature superconductors

2018

We report on a new state of matter manifested by strongly correlated Fermi systems including various heavy-fermion (HF) metals, two-dimensional quantum liquids such as $\rm ^3He$ films, certain quasicrystals, and systems behaving as quantum spin liquids. Generically, these systems can be viewed as HF systems or HF compounds, in that they exhibit typical behavior of HF metals. At zero temperature, such systems can experience a so-called fermion-condensation quantum phase transition (FCQPT). Combining analytical considerations with arguments based entirely on experimental grounds we argue and demonstrate that the class of HF systems is characterized by universal scaling behavior of their ther…

Quantum phase transitionHigh-temperature superconductivityNon-Fermi liquid statesFOS: Physical sciencesQuantum phase transition01 natural sciencesNew state of matter010305 fluids & plasmaslaw.inventionQuantum spin liquidsSuperconductivity (cond-mat.supr-con)Condensed Matter - Strongly Correlated Electronslaw0103 physical sciencesGeneral Materials Science010306 general physicsQuantumSuperconductivityPhysicsFlat bandsCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Condensed Matter - SuperconductivityFermi surfaceStrongly correlated electron systemsFermionCondensed Matter PhysicsAtomic and Molecular Physics and OpticsHeavy fermionsHigh-Tc superconductivityCold gasesState of matterStrongly correlated materialQuasicrystals
researchProduct

Magnetic quantum criticality in quasi-one-dimensional Heisenberg antiferromagnet Cu(C4H4N2)(NO3)2

2016

We analyze exciting recent measurements [Phys. Rev. Lett. 114 (2015) 037202] of the magnetization, differential susceptibility and specific heat on one dimensional Heisenberg antiferromagnet Cu(C4H4N2)(NO3)2 (CuPzN) subjected to strong magnetic fields. Using the mapping between magnons (bosons) in CuPzN and fermions, we demonstrate that magnetic field tunes the insulator towards quantum critical point related to so-called fermion condensation quantum phase transition (FCQPT) at which the resulting fermion effective mass diverges kinematically. We show that the FCQPT concept permits to reveal the scaling behavior of thermodynamic characteristics, describe the experimental results quantitativ…

non-fermi-liquid ground statesstrongly correlated electron systemsquasi-one-dimensional systemheavy fermionsspin chain modelsAnnalen Der Physik
researchProduct